
Learning Model-free Robot Control by a Monte

Carlo EM Algorithm

Nikos Vlassis1 Marc Toussaint2 Georgios Kontes1

Savas Piperidis1

1Technical University of Crete
Dept. of Production Engineering and Management

73100 Chania, Greece
Email: {vlassis,kontes,savas}@dpem.tuc.gr

2TU Berlin, Franklinstr 28/29 FR6-9, 10587 Berlin, Germany
Email: mtoussai@cs.tu-berlin.de

Published in Autonomous Robots 27(2):123-130, 2009.

Abstract

We address the problem of learning robot control by model-free re-
inforcement learning (RL). We adopt the probabilistic model of Vlassis
and Toussaint (2009) for model-free RL, and we propose a Monte Carlo
EM algorithm (MCEM) for control learning that searches directly in
the space of controller parameters using information obtained from
randomly generated robot trajectories. MCEM is related to, and gen-
eralizes, the PoWER algorithm of Kober and Peters (2009). In the
finite-horizon case MCEM reduces precisely to PoWER, but MCEM
can also handle the discounted infinite-horizon case. An interesting
result is that the infinite-horizon case can be viewed as a ‘random-
ized’ version of the finite-horizon case, in the sense that the length
of each sampled trajectory is a random draw from an appropriately
constructed geometric distribution. We provide some preliminary ex-
periments demonstrating the effects of fixed (PoWER) vs randomized
(MCEM) horizon length in two simulated and one real robot control
tasks.

1

1 Introduction

Reinforcement Learning (RL) is a notable paradigm for robot control with
several reported successes in recent years (Tedrake et al., 2005; Abbeel et al.,
2007; Kober and Peters, 2009; Riedmiller et al., 2009; Martinez-Cantin et al.,
2009). In this paper we address the problem of model-free RL, in which
the goal is to learn a controller without knowledge of the dynamics of the
system (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). In model-
free RL, a controller is chosen from a parametric family and its parameters
are learned by trial and error: for given controller parameters, the robot
executes a number of trajectories through the state space, then uses the
collected information (observed states, actions, and rewards) to update the
controller parameters, and so forth. The challenge here is to estimate a good
parameter update from a small number of sampled trajectories.

Several successful model-free RL approaches in robotics are instances of
actor-critic or policy gradient algorithms (Ng and Jordan, 2000; Tedrake
et al., 2005; Peters and Schaal, 2008a). A policy gradient RL algorithm
computes and follows in each step the stochastic gradient of the policy per-
formance until convergence at a local maximum. Peters and Schaal (2008b)
describe several policy gradient algorithms that can be used in robotics.
Such algorithms have been analyzed extensively and they have been very
successful in practice, however their main shortcoming is that they depend
on a learning rate which is difficult to set.

Dayan and Hinton (1997) suggested that a RL problem can be tackled by
the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). The
main idea is to treat immediate rewards as probabilities of some fictitious
events (an idea suggested earlier by Cooper (1988)) in which case one can
use probabilistic inference techniques like EM for optimization. Recently,
Kober and Peters (2009) developed an EM-based algorithm, called PoWER,
for learning parametrized robot control policies in an episodic RL setting.
PoWER inherits many of the advantages of the EM algorithm like simplicity
of implementation and no need for a learning rate, and in several robotic
tasks it demonstrated convincingly better performance than several state-
of-the-art policy gradient algorithms.

PoWER is a promising new approach in learning robot control, but it is
limited to episodic tasks that involve a fixed horizon of control actions. In
this paper we draw on the probabilistic view of model-free RL (Toussaint and
Storkey, 2006; Vlassis and Toussaint, 2009) and we re-derive the PoWER
algorithm as an instance of a Monte-Carlo EM algorithm (MCEM) for in-
ference on an infinite mixture model. The probabilistic view of model-free

2

RL allows for a generalization of the PoWER algorithm to the discounted
infinite-horizon setting, which opens up the way for the use of EM-based
techniques for learning time-invariant controllers. An interesting result of
our framework is that the infinite-horizon case can be viewed as a ‘random-
ized’ version of the finite-horizon case, in the sense that the length of each
sampled trajectory is a random draw from an appropriately constructed ge-
ometric distribution over the time variable. Simply put, PoWER can be
turned into an infinite horizon algorithm just by randomization over the
length of each trajectory (with an additional weighting of the rewards). We
provide some preliminary experiments demonstrating the effects of fixed
(PoWER) vs randomized (MCEM) horizon length in two simulated and one
real robot control tasks.

2 Model-free RL as probabilistic inference

We model the robotic task as an infinite-horizon discrete-time Markov De-
cision Process (MDP) with continuous states x ∈ Rn and actions u ∈ R
(the generalization to high-dimensional actions is straightforward but we
limit our discussion to one-dimensional actions for clarity). The robot al-
ways starts from a state x0 drawn from a distribution p(x0), and it follows a
stochastic policy πθ(u|x) parametrized by parameters θ. At each time step t
the robot collects immediate reward rt that is a function of the state xt and
the action ut. In this work we are interested in the model-free setting in
which we do not have access to the transition model of the MDP but we can
sample trajectories from the MDP starting from p(x0) and following some
policy. The discounted infinite horizon RL problem is defined as follows:
Using only sampled experience from the MDP, find a point estimate of θ
that maximizes the expected future reward (value of policy)

J(θ) = E
[∞∑
t=0

γtrt; θ
]
, (1)

where the expectation is taken over all possible trajectories through the
MDP starting from p(x0) and following πθ. In this paper we are only inter-
ested in model-free RL algorithms that do not attempt to build any models
during execution, neither of the dynamics of the MDP nor of any auxiliary
state or state-action value function.

When a model of the MDP is available, and the rewards rt are nonneg-
ative quantities (say, after normalization holds rt ∈ [0, 1]), Toussaint and
Storkey (2006) showed that it it possible to cast the optimization of J(θ) as

3

a problem of probabilistic inference on an infinite mixture of finite-horizon
MDPs. In this approach, the horizon of the MDP is viewed as a discrete
random variable T with geometric prior distribution p(T) = (1 − γ)γT ,
for T = 0, 1, . . . ,∞. The key idea, which goes back to Cooper (1988),
is to treat rewards as probabilities of some fictitious events. In particu-
lar, the reward rT obtained at some step T of the infinite-horizon MDP is
viewed as the probability of some event R occurring at the last time step
of a T -horizon MDP, where the two MDPs have identical dynamics. Let
ξ = (x0, u0, .., xT , uT) be a state-action trajectory of length |ξ| = T , and
X T = {ξ : |ξ|= T} be the space of length-T trajectories. In this case the
expected return J(θ) becomes a likelihood function of an infinite mixture
model:

J(θ) =
∞∑
t=0

γtE[rt; θ] =
1

1− γ

∞∑
t=0

p(t)
∫
ξ∈X t

p(ξ|t; θ) p(R|ξ), (2)

where p(t) = (1 − γ)γt, for t = 0, 1, . . . ,∞, is a geometric distribution,
p(ξ|t; θ) the distribution of t-length trajectories ξ ∈ X t (parametrized by
policy parameters θ), and p(R|ξ) = r|ξ| is the probability of R occurring at
the last time step of trajectory ξ (which is the terminal reward r|ξ| of ξ).
Under the MDP dynamics, the distribution of T -length trajectories under
policy πθ is given by

p(ξ|T ; θ) = p(xξ0) πθ(uξT |xξT)
T−1∏
t=0

p(xξ(t+1)|xξt, uξt) πθ(uξt|xξt), (3)

where p(xt+1|xt, ut) is the transition model of the MDP, and xξt, uξt are the
observed states and actions in the trajectory ξ.

When the model of the MDP is known, maximization of J over θ can be
carried out, for instance, by the EM algorithm (Toussaint and Storkey, 2006)
or by MCMC sampling (Hoffman et al., 2008). In this paper we address the
model-free case, where the MDP dynamics is unknown but the robot can
interact with the MDP and collect data. We adopt the probabilistic model
of Vlassis and Toussaint (2009) that defines the following joint distribution
over random variables R, t, ξ, and T ∈ {0, 1, . . . ,∞}:

p(R, t, ξ, T ; θ) = a(T) b(t) p(ξ|t; θ) p(R|ξ, T), (4)

where p(ξ|t; θ) is defined in (3), and

a(t) = (1− δ)δt, (5)
b(t) = (1− γ/δ)(γ/δ)t, (6)

4

are geometric distributions for t = 0, . . . ,∞, with γ < δ < 1. The random
variable T can be thought of as providing a ‘maximal’ trajectory length
in the sense that, for given T , only trajectories with length shorter than
T have nonzero probability when conditioned on the event R. The follow-
ing theorem shows that the discounted value function J(θ) of the MDP is
proportional to the mixture likelihood p(R; θ) of the above model:

Theorem 1. The value function (1) is proportional to the mixture likelihood

J(θ) ∝
∞∑
T=0

a(T)
∞∑
t=0

b(t)
∫
ξ∈X t

p(ξ|t; θ) p(R|ξ, T), (7)

with

p(R|ξ, T) =
{
r|ξ|, if |ξ| ≤ T
0, otherwise

, (8)

where r|ξ| is the reward at the last time step of ξ.

Proof. A straightforward adaptation to the continuous setting of the cor-
responding theorem for discrete state-action spaces (Vlassis and Toussaint,
2009) by replacing the summations over trajectories to integrals.

Note that the above model is parametrized by a single scalar δ that
controls the length of the trajectories. For values of δ close to γ, the value
J(θ) corresponds to the shortest path formulation of an infinite-horizon value
function. Contrary to the original probabilistic model of Toussaint and
Storkey (2006), the above model allows using all rewards observed in the
course of a trajectory during learning (Vlassis and Toussaint, 2009).

3 Likelihood maximization with a Monte Carlo
EM algorithm

We want to maximize over θ the function J(θ) from (7); equivalently we
can maximize the log-likelihood function L(θ) = log p(R; θ). We use the
EM algorithm for optimization, in which we iteratively maximize an energy
function F (θ, q) that is a lower bound of L(θ) (Neal and Hinton, 1998).
The energy F is a function of the unknown parameters θ and an arbitrary
distribution q ≡ q(ξ, T, t) over the ‘hidden’ variables ξ ∈ X t and t, T ∈ N0,
defined as follows (the two decompositions are equivalent):

F (θ, q) = L(θ)−DKL

[
q(ξ, T, t) || p(ξ, T, t|R; θ)

]
(9)

= Eq(ξ,T,t)
[

log p(R, ξ, T, t; θ)
]

+H(q). (10)

5

In (9) the term DKL is the Kullback-Leibler divergence between q(ξ, T, t)
and p(ξ, T, t|R; θ), the Bayes posterior over t, T and ξ given observed data
R and parameters θ. In (10) the first term is the expectation of the joint
log-likelihood over the distribution q, and H(q) is the entropy of q (which is
independent of θ). We know that the Kullback-Leibler divergence between
two distributions is always nonnegative and it becomes zero when the two
distributions are equal, hence from (9) we see that F is indeed a lower bound
of L, for any choice of q.

An EM algorithm for maximizing F performs coordinate ascent in the
space of θ and q: in the E-step we fix θ and maximize F over q; in the
M-step we fix q and maximize F over θ. This procedure converges to a local
maximum of F (which may also be a local maximum of L). For the E-step,
we see from (9) that the optimal distribution q∗ that maximizes F is the
Bayes posterior computed with parameters θold found at the last M-step:

q∗(ξ, T, t) = p(ξ, T, t|R; θold) (11)
∝ a(T) b(t) p(ξ|t; θold) p(R|ξ, T). (12)

In this case holds F (θ, q∗) = L(θ) and the two functions touch each other
at the value of θold (and local maxima of F are also local maxima of L).
However, other choices of q are also possible as long as we are guaranteed not
to decrease F (but in this case local maxima of F may no longer correspond
to local maxima of L).

In the M-step we maximize F over θ using the second decomposition (10).
When using the optimal q∗ from (12), and ignoring terms that do not depend
on θ, the energy reads:

F (θ, q∗) = Ep(ξ,T,t|R;θold)

[
log p(ξ|t; θ)

]
. (13)

Clearly we cannot evaluate the above expectation analytically when we do
not have a model of the MDP, so we have to approximate the expectation
by sampling trajectories from the MDP. This is the general idea behind
the Monte-Carlo EM algorithm (MCEM) (Wei and Tanner, 1990), that is,
replacing a difficult to compute expectation in the E-step by drawing samples
from q∗. Here we draw from q∗ ∝ a(T) b(t) p(ξ|t; θold) p(R|ξ, T) by first
sampling a maximal length T from a(T), then sampling a T -length trajectory
ξ ∼ p(ξ|T ; θold) from the MDP using θold, and then using all t-length sub-
trajectories of ξ, for t = 0, . . . , T , as draws from q∗ with importance weights
reflecting reward. Assume that m trajectories ξi, i = 1, ..,m, are drawn
as described above from a(T) p(ξ|T ; θold); then an estimate of the energy

6

F (θ, q∗) in (13) is

F̂ (θ) =
1
m

m∑
i=1

1
|ξi|+ 1

|ξi|∑
t=0

wit log p(ξi|t; θ), (14)

where p(ξi|t; θ) is the likelihood of the t-length prefix of ξi from (3), and wit
are importance weights given by

wit = b(t) rit, (15)

where rit is the reward obtained at step t of trajectory ξi. (Note that when
the model is parametrized by δ ≈ γ, then b(t) ≈ 1 and the importance
weights are just rewards.) Alternatively one can sample trajectories using
a different controller with parameters θother, in which case the importance
weights read:

wit =
p(ξi; θold)
p(ξi; θother)

b(t) rit, (16)

and the ratio p(ξ; θold)/p(ξ; θother) can be directly computed without knowl-
edge of the MDP model (Sutton and Barto, 1998).

When log p(ξ|t; θ) is quadratic in the parameters θ (e.g., the case of
a linear-Gaussian controller), the maximization of the approximate energy
in (14) can be done analytically by solving a weighted least squares problem.
We adopt here the same controller parametrization that was used by Kober
and Peters (2009) based on a model suggested by Rückstieß et al. (2008), in
which the controller is linear-Gaussian with state dependent noise:

ut = (θ + εt)>φ(xt), (17)

where φ : Rn 7→ Rd are fixed basis functions and εt is white Gaussian noise
εt ∼ N (εt; 0, σ2Id) that enforces exploration. The variance parameter σ can
be either kept fixed or it can be learned in the same framework; here we
assume it is fixed without loss of generality. Let εit be the observed noise
term at time step t of a sampled trajectory ξi. The contribution of a single ξi
to the energy F̂ (θ) in (14) is (dropping constant multiplicative and additive

7

terms):

F̂i(θ) =
1

|ξi|+ 1

|ξi|∑
τ=0

b(τ) riτ
τ∑
t=0

log πθ(uit|xit) (18)

=
1

|ξi|+ 1

|ξi|∑
t=0

[|ξi|∑
τ=t

b(τ) riτ
]

log πθ(uit|xit) (19)

=
1

|ξi|+ 1

|ξi|∑
t=0

Qit log πθ(uit|xit), (20)

where we defined

Qit =
|ξi|∑
τ=t

b(τ) riτ . (21)

Differentiating (20) over θ and neglecting terms independent of θ gives (in
the one-dimensional case d = 1)

θ∗ = θold +
∑m

i=1(1 + |ξi|)−1
∑|ξi|

t=0Qitεit∑m
i=1(1 + |ξi|)−1

∑|ξi|
t=0Qit

, (22)

and more generally

θ∗ = θold +
{ m∑
i=1

(1 + |ξi|)−1

|ξi|∑
t=0

QitWit

}−1

×
{ m∑
i=1

(1 + |ξi|)−1

|ξi|∑
t=0

QitWitεit

}
, (23)

where Wit = φ(xit)φ(xit)>/(φ(xit)>φ(xit)).

4 The episodic case: The PoWER algorithm

Here we show that the PoWER algorithm of Kober and Peters (2009) cor-
responds to a special case of our model. PoWER applies on episodic tasks
where each sampled trajectory has fixed length H, and the goal is to maxi-
mize the non-discounted value function1

J(θ) = E
[H∑
t=0

rt; θ
]
. (24)

1The discounted finite-horizon case was also addressed recently (Peters and Kober,
2009).

8

It is straightforward to see that our model (4) can still be used in this case,
by assuming a degenerate distribution a(T) where a(T) = 1 for T = H and 0
otherwise, and a uniform distribution b(t) = 1

1+H , for T = 0, 1, . . . ,H. The
update equations in the M-step of EM are then identical to (22) and (23),
with the simplification that each trajectory has identical length H and the
quantities b(t) are constant. One then gets precisely the update equations
of PoWER, with Qit =

∑H
τ=t riτ .

Comparing the two algorithms, MCEM and PoWER, we note two main
differences. The first is that MCEM has a built-in capacity to handle dis-
counted infinite horizon problems by explicitly incorporating the discount
factor γ in its update steps (via the terms b(t)). This may not necessar-
ily imply, however, that PoWER cannot handle infinite horizon tasks (or
the related stochastic shortest path problems): in several problems, fixing
H to some constant value allows PoWER to learn a controller with high
discounted value. We have observed this in practice in all problems that
we tried PoWER: there was always a good (‘optimal’) value of H for which
PoWER would improve the value function, even in infinite horizon problems.
However this value of H was hard to locate: different problems required dif-
ferent values of H, and even the same problem required different values of H
depending on the initialization of the parameters θ. On the contrary, MCEM
does not require setting a fixed value for H, as the length of each sampled
trajectory is a random draw from the geometric distribution a(T) ∝ δT . Ef-
fectively MCEM ‘randomizes’ over H in each step, and provides an insightful
way to generalize PoWER to the discounted setting.

The second difference between MCEM and PoWER is that in the update
equations of MCEM the rewards are discounted by the quantities b(t), which
are decaying in t. This can have a positive effect on the convergence of the
MCEM algorithm when the MDP dynamics is noisy: the algorithm weighs
early rewards more heavily than rewards arriving later in a trajectory, as the
latter could have been contaminated by noise in the trajectory dynamics. We
note however that in recent work, Peters and Kober (2009) have extended
PoWER to incorporate discounting (based on γ) in the update equations,
similar to MCEM.

5 Experiments

In this section we summarize results from some preliminary experiments on
two simulated problems and a real robot balancing problem. In the simu-
lated problems we only compare MCEM to the PoWER algorithm, as the

9

main focus of this work was to extend the PoWER algorithm to the dis-
counted infinite horizon setting, so it is interesting to see experimentally the
differences between these two algorithms. (The theoretical and experimental
comparison of MCEM to other methods in the literature, both model-free
and model-based, is a matter of future work.) In the real robot problem
we only tried MCEM, using importance sampling in order to reduce sample
complexity as we explain below.

The first synthetic problem is a two-dimensional MDP with nonlinear
dynamics, similar to the one used by Toussaint and Storkey (2006), for
which the value function J(θ) as a function of θ ∈ R2 exhibits a single
maximum (we verified this by estimating J(θ) over a grid of values for θ).
The state space is x = [x1, x2], where x1 is robot position and x2 is robot
velocity, the control action u produces acceleration, and the MDP dynamics
is

x2(t+ 1) = x2(t) +
1

1 + exp(−u(t))
− 0.5 + κ, (25)

x1(t+ 1) = x1(t)− 0.1x2(t+ 1) + κ, (26)

where κ is zero-mean Gaussian noise with σκ = 0.02. The robot starts from
position x1 = 1 (plus some Gaussian noise with standard deviation 0.001)
and velocity x2 = 0, and must reach the state [0, 0]. The discount factor
is γ = 0.95. The reward is modeled as a rare event, r(t) = 1 if ||x|| ≤ 0.1
and 0 otherwise. The control policy is stochastic and time-invariant, given
by ut = (θ + εt)>xt, with Gaussian exploration noise εt ∼ N (εt; 0, σ2

εI2)
with fixed σε = 0.5, where the choice of σε was guided by the dimensions of
the parameter landscape (the value function is nontrivial approximately for
θ1 ∈ [0, 60] and θ2 ∈ [−8, 0]).

We applied MCEM and PoWER starting from random values of θ within
the nontrivial region of the parameter landscape, and report average results.
In each EM iteration we sampled 50 trajectories. In MCEM we used δ =
0.99, and in PoWER we used horizon length H = 80. The value of H in
PoWER was chosen in such a way that the algorithm would reach the (rare)
reward as fast as possible for any initial value of θ. (Note that this is a near-
optimal way to choose H; in a real-world problem there is no obvious way
to choose a single good value of H). In each EM iteration we computed the
discounted cumulative reward of each controller by sampling 500 trajectories
through the MDP. In Fig. 1 we see the results, where the x-axis shows the
iterations of EM, and the y-axis shows discounted cumulative reward for each
value of θ. This experiment highlights the advantage of MCEM over PoWER
in the way the two algorithms handle the horizon depth: by randomizing

10

0 100 200 300 400 500 600 700 800 900

3.5

4

4.5

5

5.5

6

6.5

7

7.5

iterations

va
lu

e
of

 p
ol

ic
y

MCEM

PoWER

Figure 1: MCEM vs PoWER on a synthetic two-dimensional MDP with
nonlinear dynamics. The x-axis indicates the EM iterations, and the y-axis
shows the estimated discounted value of each controller. For MCEM we
used δ = 0.99, and for PoWER H = 80.

over the length of each sampled trajectory, MCEM is able to locate the rare
event more often than PoWER on the average, both at the initial stages
of the algorithm where θ is far from the optimal value and hence large
trajectories are needed to collect reward, as well as at later stages of the
algorithm (near the optimal θ) when only a few steps are needed to collect
reward.

The second simulated experiment is a helicopter hovering problem in-
volving high-dimensional, noisy, nonlinear dynamics. For this experiment
we used a helicopter simulator provided by Pieter Abbeel, Adam Coates
and Andrew Ng at the Stanford University, and which has been used at the
2009 Reinforcement Learning Competition as a competition domain.2 The
state space here is 9-dimensional, involving the helicopter’s position (x, y, z),
orientation (roll φ, pitch θ, yaw ω) and velocity (ẋ, ẏ, ż). The action space
is 4-dimensional consisting of:

• u1: The longitudinal (front-back)cyclic pitch control.

• u2: The latitudinal (left-right) cyclic pitch control.

• u3: The main rotor collective pitch control.
2See www.rl-competition.org

11

1 2 3 4 5 6 7 8 9 10

0.813

0.8135

0.814

0.8145

0.815

0.8155

0.816

0.8165

iterations

m
ea

n
cu

m
ul

at
iv

e
re

w
ar

d

MCEM

PoWER

Figure 2: MCEM vs PoWER in the simulated helicopter hovering prob-
lem. The x-axis indicates the EM iterations, and the y-axis shows average
cumulative reward.

• u4: The tail rotor collective pitch control.

The task here is to hover the helicopter based on feedback we are given in
each time step, that comes in the form of a 9-dimensional error vector that
includes the distance of each of the state parameters from a target point in
the parameter space. Based on this error vector we defined the following
controller:

u1 = −w1xerror − w2ẋerror − w3θerror + w4, (27)
u2 = −w5yerror − w6ẏerror − w7φerror + w8, (28)
u3 = w9zerror − w10żerror + w11, (29)
u4 = −w12ωerror, (30)

parametrized by the 9-dimensional vector w. (The parameters w4, w8 and
w11 are constant terms used for the helicopter trimming.)

We tested PoWER and MCEM algorithms in this benchmark. For
PoWER we chose H = 50 (after tuning) and for MCEM we chose δ = 0.99
(and assumed γ = 0.95). Each trajectory had maximal allowed length 6000
time steps, which translates into 10 minutes of flying time in the real heli-
copter. In each EM iteration we used batches of 100 trajectories, and set
the exploration noise equal in both algorithms. In each test run we initial-
ized the parameters by manual tuning based on software provided by the

12

Figure 3: Our self-balancing robot Robba.

RL Competition. The evaluation was performed according to the Reinforce-
ment Learning Competition rules, being the average of the rewards collected
during the learning phase. The reward in each time step was calculated in
both algorithms as follows:

r(t) = exp(−x2
error) + exp(−ẋ2

error) + exp(−θ2
error)+

exp(−y2
error) + exp(−ẏ2

error) + exp(−φ2
error)+

exp(−z2
error) + exp(−ż2

error) + exp(−ω2
error). (31)

If the helicopter’s state exceeds some error bounds, the helicopter crashes.
In our implementations neither of the algorithms ever crashed the helicopter.
In Fig. 2 we see the results of learning for MCEM and PoWER, from which
similar conclusions as in the toy 2d problem can be drawn, namely that the
MCEM algorithm allows more flexibility by working with a large enough δ,
obviating the need to define a precise horizon depth H as in PoWER.

The third experiment involves a real balancing robot. We have built our
own wheeled balancing robot, called Robba, which is shown in Fig. 3. Robba
uses differential drive and it was explicitly designed to become a compact,
low cost self-balancing robot. The vehicle comprises an aluminum frame
that supports the following components:

• Two 12 Vdc, 152 RpM spur geared motors

• An ooPIC microcontroller with the R carrier board

13

• One dual PWM motor driver

• Two 64 pulses per revolution odometers, one for each wheel

• A dual axis accelerometer (ADXL203) and a single axis gyro (ADXRS300),
both from Analog Devices

• Two energy sources, a 12V 2700mAh rechargeable battery for the mo-
tors and a 6V 2700mAh rechargeable battery for the electronics

One of the main considerations for the vehicle design was the achievement
of compact dimensions and robust construction, able to confront the strains
during the learning period. Robba uses two 12cm diameter wheels, it is
12cm long, 24cm wide with a height of 21cm and weighs 2Kg.

In our learning experiment we start the robot from zero vertical angle
plus some noise, and we instantly give large equal torque to both motors
resulting in loss of balance for the robot. Our goal is to have the robot
recover its initial vertical position as fast as possible and stay in balance.
The state space here is four-dimensional, involving vertical angle x1, angular
velocity x2, linear velocity x3, and position on the horizontal axis x4. The
torque control is given by u = (θ + ε)Tx, where x = [x1, x2, x3, x4]> and
θ ∈ R4, and εt is exploration noise. In each step we penalize any angle
different to 0 degrees and any linear speed of the robot using rewards

r(t) =
1
2

exp(−x2
1(t)) +

1
2

exp(−x2
3(t)). (32)

In order to have a good estimate for the angle of the robot, we fused the
measurements of the gyro and the accelerometer using a simple Kalman
filter. In each run we initialized the parameters by manual tuning and
in accordance to analytical model-based solutions of similar systems (Kim
et al., 2005). In each episode we sampled batches of 20 trajectories. In
this experiment we only used the MCEM algorithm with γ = 0.99 and δ =
0.992, and we used importance sampling of trajectories as in (16). After the
learning phase we evaluated each deterministic policy by trying it five times
on the real robot with trajectory length 200 time steps. The learning curve
of MCEM is shown in Fig. 4. After learning the robot was able to recover fast
from the initial disturbance (as well as from subsequent similar disturbances
that we manually created) and stabilize its position at zero angle. Note that
the use of importance sampling resulted in significant speedups, as only five
iterations of EM were sufficient to achieve good balancing behavior.

14

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iterations

va
lu

e
of

 p
ol

ic
y

Figure 4: Learning curve of Robba with MCEM and importance sampling.
The x-axis indicates the EM iterations, and the y-axis shows estimated
discounted value.

6 Conclusions

We proposed a Monte Carlo EM algorithm (MCEM) for learning model-free
robot control that is based on the probabilistic model of Vlassis and Tous-
saint (2009) for model-free Reinforcement Learning. The MCEM algorithm
searches in the space of controller parameters using information obtained
from randomly generated robot trajectories, and it can be viewed as the
generalization of the PoWER algorithm of Kober and Peters (2008) to the
discounted infinite-horizon case. An interesting aspect of our framework is
that it allows treating the infinite-horizon case as a ‘randomized’ version of
the episodic case, whereby the length of each trajectory is a random sample
from a geometric distribution in an appropriately constructed probabilistic
model. We have provided some preliminary experiments comparing MCEM
to PoWER in two simulated and one real-world robotic problems, highlight-
ing the potential of MCEM to handle infinite horizon problems. Ongoing
work aims at studying the relationships of MCEM to state-of-the-art policy
gradient algorithms for robotics (Peters and Schaal, 2008a,b).

Acknowledgements

We give warm thanks to Jan Peters for various helpful discussions.

15

References

Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An application
of reinforcement learning to aerobatic helicopter flight. In Proc. Neural
Information Processing Systems.

Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-dynamic programming.
Athena Scientific.

Cooper, G. F. (1988). A method for using belief networks as influence
diagrams. Proc. 4th Workshop on Uncertainty in Artificial Intelligence
(pp. 55–63). Minneapolis, Minnesota, USA.

Dayan, P. and Hinton, G. E. (1997). Using expectation-maximization for
reinforcement learning. Neural Computation, 9(2):271–278.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likeli-
hood from incomplete data via the EM algorithm. J. Roy. Statist. Soc.
B, 39:1–38.

Hoffman, M., Doucet, A., de Freitas, N., and Jasra, A. (2008). Bayesian
policy learning with trans-dimensional MCMC. In Proc. Advances in
Neural Information Processing Systems 20.

Kim, Y. and Kim, S. H. and Kwak, Y. K. (2005). Dynamic Analysis of
a Nonholonomic Two-Wheeled Inverted Pendulum Robot. Journal of
Intelligent and Robotic Systems, 44(1):25–46.

Kober, J. and Peters, J. (2009). Policy search for motor primitives in
robotics. In Proc. Advances in Neural Information Processing Systems
21.

Martinez-Cantin, R. and de Freitas, N. and Castellanos, J. A. and Doucet,
A. (2009). A Bayesian Exploration-Exploitation Approach for Optimal
Online Sensing and Planning with a Visually Guided Mobile Robot. Au-
tonomous Robots, 27(1). This issue, part B.

Neal, R. M. and Hinton, G. E. (1998). A view of the EM algorithm that
justifies incremental, sparse, and other variants. In Jordan, M. I., editor,
Learning in graphical models, pages 355–368. Kluwer Academic Publish-
ers.

Ng, A. Y. and Jordan, M. I. (2000). PEGASUS: A policy search method for
large MDPs and POMDPs. In Proc. Uncertainty in Artificial Intelligence.

16

Peters, J. and Kober, J. (2009). Using Reward-Weighted Imitation for Robot
Reinforcement Learning. In Proc. 2009 IEEE Int. Symp. on Approximate
Dynamic Programming and Reinforcement Learning.

Peters, J., and Schaal, S. (2008a). Natural actor critic. Neurocomputing,
71(7-9):1180–1190.

Peters, J., and Schaal, S. (2008b). Reinforcement learning of motor skills
with policy gradients. Neural Networks, 21(4):682-697.

Riedmiller, M. and Gabel, T. and Hafner, R. and Lange, S. (2009). Re-
inforcement learning for robot soccer. Autonomous Robots, 27(1):55–73.
This issue, part A.

Rückstieß, T. and Felder, M. and Schmidhuber, J. (2008). State-Dependent
Exploration for Policy Gradient Methods. In Proc. European Conf. on
Machine Learning.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An intro-
duction. Cambridge, MA: MIT Press.

Tedrake, R., Zhang, T. W., and Seung, H. S. (2005). Learning to walk in 20
minutes. In Proc. 14th Yale Workshop on Adaptive and Learning Systems.

Toussaint, M. and Storkey, A. (2006). Probabilistic inference for solving
discrete and continuous state markov decision processes. In Proc. Int.
Conf. on Machine Learning.

Vlassis, N. and Toussaint, M. (2009). Model-free Reinforcement Learning as
Mixture Learning. In Proc. Int. Conf. on Machine Learning. Montreal,
Canada.

Wei, G. and Tanner, M. (1990). A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithm. J. Amer.
Statist. Assoc., 85:699–704.

17

