
J Intell Robot Syst (2009) 56:469–484
DOI 10.1007/s10846-009-9332-z

Evolution of Fuzzy Controllers for Robotic Vehicles:
The Role of Fitness Function Selection

L. Doitsidis · N. C. Tsourveloudis · S. Piperidis

Received: 19 February 2009 / Accepted: 7 April 2009 / Published online: 23 April 2009
© Springer Science + Business Media B.V. 2009

Abstract An important issue not addressed in the literature, is related to the
selection of the fitness function parameters which are used in the evolution process
of fuzzy logic controllers for mobile robot navigation. The majority of the fitness
functions used for controllers evolution are empirically selected and (most of times)
task specified. This results to controllers which heavily depend on fitness function
selection. In this paper we compare three major different types of fitness functions
and how they affect the navigation performance of a fuzzy logic controlled real
robot. Genetic algorithms are employed to evolve the membership functions of
these controllers. Further, an efficiency measure is introduced for the systematic
analysis and benchmarking of overall performance. This measure takes into account
important performance results of the robot during experimentation, such as the final
distance from target, the time needed to reach its final position, the time of sensor
activation, the mean linear velocity e.t.c. In order to examine the validity of our
approach a low cost mobile robot has been developed, which is used as a testbed.

Keywords Mobile robots · Evolutionary robotics · Fuzzy logic

1 Introduction

Fuzzy logic techniques are commonly used for navigation of different types of robot
vehicles [1]. The popularity of fuzzy logic is based on the fact that it can cope with the
uncertainty of the sensors and the environment really well. By using it, the robotic

L. Doitsidis (B) · N. C. Tsourveloudis · S. Piperidis
Intelligent Systems and Robotics Laboratory, Department of Production
Engineering and Management, Technical University of Crete, University Campus,
Chania 73100, Greece
e-mail: ldoitsidis@dpem.tuc.gr

470 J Intell Robot Syst (2009) 56:469–484

vehicles are able to move in known or unknown environments, using control laws
that derive from a fuzzy rule base. This base is consisted from a set of predefined IF–
THEN rules, which remains constant during the operation of the robot. These rules
along with the membership functions of the fuzzy variables are usually designed ad
hoc by human experts.

Several researchers have used fuzzy logic for the navigation of mobile robots.
In [2], a layer goal oriented motion planning strategy using fuzzy logic controllers
has been proposed, which uses sub-goals in order to move in a specific target
point. Another approach is presented in [3], where the authors propose a control
system consisted of fuzzy behaviors for the control of an indoor mobile robot. All
the behaviors are implemented as Mamdani fuzzy controllers except one which
is implemented as adaptive neuro-fuzzy. In [4] a combined approach of fuzzy
and electrostatic potential fields is presented that assures navigation and obstacle
avoidance. The main drawback of these approaches is that the design of the fuzzy
controllers is relied mainly on the experience of the designer. In order to overcome
this problem several researchers have proposed tuning of the fuzzy logic controller
based on learning methods [5] and evolutionary algorithms [6–11], in an attempt to
improve the performance and the behavior of the control procedure.

In [6], a fuzzy logic controller for a khepera robot in a simulated environment was
evolved using a genetic algorithm, and the behaviors of the evolved controller were
analyzed with a state transition diagram. The robot produces emergent behaviors
by the interaction of the fuzzy rules that came out from the evolution process. In
[7], the authors proposed a three step evolution process to self-organize a fuzzy
logic controller. The procedure initially tunes the output term set and rule base,
then the input membership functions, and in the third phase it tunes the output
membership functions. Hargas et al. in [8], proposed a fuzzy-genetic technique for
the on-line learning and adaptation of an intelligent robotic vehicle. In [9] the authors
present a methodology for tuning the knowledge base of the fuzzy logic controller
based on a compact scheme for the genetic representation of the fuzzy rule base.
In [10] the authors present a scheme for the evolution of the rule base of a fuzzy
logic controller. The evolution takes place in simulated robots and the evolved
controllers are tested on a khepera mobile robot. Nanayakkara et al. in [11], present
an evolutionary learning methodology using a multi objective fitness function that
incorporates several linguistic features. The methodology is compared to the results
derived from a conventional evolutionary algorithm. An attempt to formulate a
way of picking the suitable function for a task was made by Nolfi and Floreano in
[12]. They proposed the concept of “fitness space”, which provides a framework for
describing and designing fitness functions for autonomous systems.

An important issue not addressed in the literature, is related to the selection of
the fitness function parameters which are used in the evolution process of fuzzy logic
controllers. The majority of the fitness functions used for controllers evolution are
empirically selected and (most of times) task specified. This results to controllers
which heavily depend on fitness function selection.

In this paper we compare three major different types of fitness functions based
on a classification analysis introduced in [13]. This comparison is based on the
navigation performance of a fuzzy logic controlled real robot. The different kinds of
fuzzy controllers (produced by each fitness function) are used and analyzed. Genetic
algorithms are employed to evolve the membership functions of these controllers.

J Intell Robot Syst (2009) 56:469–484 471

Further, an efficiency measure is introduced for the systematic analysis and
benchmarking of overall performance. This measure takes into account important
performance results of the robot during experimentation, such as the final distance
from target, the time needed to reach its final position, the time of sensor activation,
the mean linear velocity e.t.c.

The paper is organized as follows. In Section 2 a brief description of different
fitness function categories and their main characteristics are presented. In Section 3
the fuzzy logic controller which is used in the evolution process is presented together
with the genetic algorithm. The three different types of fitness functions considered
in this study are identified and formally analyzed. In Section 4 a custom made
robotic vehicle used for experimentation is presented and the hardware and software
components are described in detail. In Section 5 experimental results are presented
and analyzed. Finally in Section 6, issues for discussion and further research are
presented.

2 Fitness Function Categories

The choice of the fitness function is a fundamental issue for the evolution of the
controller of mobile robots. In [13] Nelson et al. presented a detailed analysis and
classification of the different types of fitness functions used in evolutionary robotics
(ER). The fitness function is at the heart of an evolutionary computing application.
It is responsible for determining which solutions within a population are better at
solving the particular problem at hand. In work attempting to evolve autonomous
robot controllers capable of performing complex tasks, the fitness function is often
the limiting factor in controller’s quality. This limit is usually manifested by a plateau
in fitness evaluation in later generations, and indicates that the fitness function is
no longer able to detect differences between individuals in the evolving population.
In [13], a classification hierarchy based on the degree of a priori knowledge that
is reflected in the fitness functions used to evolve behaviors or task performance
abilities is presented.

The justification for using a priori knowledge as a basis for classification and
organization of the research is that it reflects the level of truly novel learning
that has been accomplished [14]. There are of course other means by which de-
signers introduce their own a priori knowledge of task solutions into the design
of experimental systems intended to study evolution (or learning) in autonomous
robots. These include selection of appropriate sensors and actuators, design of
training environments, and choice of initial conditions. Although these other forms
of introduced a prior knowledge are also important, it is the fitness function that
contains the most explicit and varied forms of task solutions knowledge. Many of
the research platforms have at least qualitative commonalities of sensor capabilities
and actuator arrangements. Seven broad classes of fitness functions are presented in
Table 1, as they are identified and described in detail in [13].

Based on this categorization we considered behavioral, aggregate and tailored
fitness functions for the evolution of the fuzzy logic controller of a mobile robot. The
selection of these types was based on the fact that the majority of the fitness functions
used in the literature is belonging to these categories [13].

472 J Intell Robot Syst (2009) 56:469–484

Table 1 Fitness function classes

Fitness function class A priori knowledge incorporated

Training data fitness functions (for use with training data sets) Very high
Behavioral fitness functions High
Functional incremental fitness functions Moderate-high
Tailored fitness functions Moderate
Environmental incremental fitness functions Moderate
Competitive and co-competitive selection Very low–moderate
Aggregate fitness functions Very low

The term behavioral fitness, describes task-specified hand-formulated functions
that measure various aspects of a robot’s functionality. The distinctive feature of this
class of functions is that they are made only of terms or components that select for
behavioral features of a presupposed solution to a given task. For example, if one
wished to evolve robots to move about an environment and avoid obstacles, one
might include a term in the fitness selection function that is maximized if a robot
turns when its forward sensors are stimulated at close range. In this case the system
is set up such that robots will evolve to produce a certain actuator output in response
to a given sensor input.

Aggregate fitness functions select only for high-level success or failure to complete
a task without regard to how the task was completed. This type of selection reduces
injection of human bias into the evolving system by aggregating the evaluation of
benefit (or deficit) of all of the robot’s behaviors into a single success/failure term.
Consider the following foraging task: a robot is to locate and collect objects and then
deposit them at a particular location (or a “nest”). An aggregate fitness function
would contain information only related to task completion. Suppose the task is
considered to be complete when an object is deposited at the nest. An example of
an aggregate fitness function for this task would be one that counted the number of
objects at the nest after the end of a trial period.

Finally, the tailored fitness functions are responsible for the evolution of behaviors
that are already well known by the designer of the evolution process. This type of
functions combines elements from both the behavioral and the aggregate categories.
Usually in tailored functions, the aggregate terms are measuring the completion of
partial task in a way that invokes some degree of a priori knowledge. As an example,
suppose a phototaxis behavior is to be evolved. A possible fitness function might
contain a term that rewards a controller that arrives at the light source by any means,
regardless of the specific sensor-actuator behaviors used to perform the task. This
term would be considered an aggregate term. If it were the only term in the fitness
function, then the whole function would be considered aggregate. If the function also
contained a second behavioral term, for example, one that maximized the amount of
time the robot spent pointing toward the light source, then the two terms together
would constitute an example of a tailored fitness function. Note that this second term,
selecting for pointing toward the light source, does represent implicit assumptions
about the structure of the environment and may not be the best way to approach the
light source in some complex environments.

J Intell Robot Syst (2009) 56:469–484 473

3 Fuzzy Logic Controller and the Evolution Process

3.1 Fuzzy Logic Controller Design

On previous work [15, 16] we have presented modular fuzzy logic controllers which
were able to navigate mobile robots in unknown environments, based on sensor’s
feedback. Based on this work we have developed a similar controller adapted to the
testbed which is going to be described.

The controller has four inputs and two outputs. The inputs are the heading error,
the distance from obstacles as it is measured from the front sonar sensor and the
distance from obstacles as it is measured from the left and the right infrared sensors.
The outputs from the controller are the speeds of the left and right servo motor. The
inputs from the sensors are used in order to calculate the collision possibilities in
three directions: front, left and right. The heading error is calculated from the robot’s
current heading and the desired heading.

Implementation wise the input variable heading error includes four trapezoidal
membership functions and one triangular membership function. The input variable
front collision possibility includes three trapezoidal membership functions and the
input variables left and right collision possibility are including two trapezoidal
membership functions each.

The value of each distance input variable di i = 1,. . . ,3 (corresponding to Front,
Left, Right Area) are expressed by the fuzzy sets Ci, Ai (corresponding to Close
andAway) for the left and right area and Ci, MDi, Ai (corresponding to Close,
Medium Distance and Away) for the front area. The values of the input variable
heading error, (he), are expressed by the fuzzy sets FL, L, AH, R, FR (which are Far
Left, Left, Ahead, Right and Far Right). The outputs of the fuzzy logic controller
are the speeds of the left and the right servo motor. The membership functions
describing the fuzzy sets for each output variable are Z , S, M, H (which are Zero,
Small, Medium and High Speed).

Each fuzzy rule j is expressed as:

IF he is HE j AND d1 is Dj1 AND d2 is Dj2 AND d3 is Dj3

THEN lm is LMj AND rm is RMj

where j = 1,. . . , number_of_rules, Dji is the fuzzy set for di in the jth rule which
takes the linguistic value of Ci, MDi, Ai for i = 1 (front area) and Ci, Ai for i = 2,3
corresponding to the left and right areas. HE j takes the linguistic values FL, L, AH,
R, FR and LM j and RM j are taking the linguistic values Z, S, M, H.

The generic mathematical expression of the jth navigation rule is given by:

μR(j) (he, di, lm, rm) = min
[
μHE(j) (he) , μDi

i
(di) , μLM(j) (lm) , μRM(j) (rm)

]
. (1)

474 J Intell Robot Syst (2009) 56:469–484

The overall navigation output is given by the max-min composition and in particular:

μ∗
N (lm, rm) = max min

he, di

[
μ∗

AND (he, di) , μR (he, di, lm, rm)
]
, (2)

where, μR (he, di, lm, rm) = J∪
j=1

μR(i) (he, di, lm, rm).

3.2 Genetic Fuzzy Tuning

The membership functions and the rule base of a fuzzy controller are usually the
potentional candidates for evolution [17]. In this approach we consider a fixed rule
base, as it was created by the human expert that designed the fuzzy logic controller,
and we evolve the membership functions by using a genetic algorithm.

The chromosome is created by encoding the real values of the numbers that
define the membership functions of the input and output variables, as described in
Fig. 1. The same approach has been used successfully for the evolution of fuzzy logic
controllers for different type of applications i.e. manufacturing systems [18].

Each input and output variable is encoded as an array Cini where i = 1,. . . ,
number_of_input_variables, and each output variable is encoded as Cout j, where
j = 1,. . . , number_of_output_variables. The overall chromosome has the following
form:

C = [
Cini Cout j

]
(3)

The length of chromosome is related to the number and type of the input and output
membership functions. An initial population is created and each individual, which is
a fuzzy logic controller, of a single generation is tested in the same experiment. After
the completion of the experiments the performance of each individual is evaluated
based on the fitness function used, and the individuals are ranked. For the selection
process, a roulette wheel with slots according to fitness is used, as described in [19].
After that the crossover is performed and mutation of the final population.

In order to investigate the influence of different types of fitness functions to
the evolution of fuzzy logic controllers for the navigation of a mobile robot, three
different fitness functions were selected based on the classification presented at
Section 2. The task of the robotic vehicle was to start from a given known position
and navigate to a target position in an unknown environment. During experimenta-
tion the crossover, the mutation probability and all other parameters of the genetic

Fig. 1 Chromosome created
by the membership functions

1a 2a 3a 4a 5a

1a 2a 3a 4a 5a

6a

6a

7a

7a

8a

8a

9a

9a

10a

10a

na

na

1n–a

1n–a2n–a

2n–a

……

Input Membership Functions Output Membership Functions

Chromosome

J Intell Robot Syst (2009) 56:469–484 475

algorithm remained the same. As a result the structure of the evolved controllers in
all cases is attributed to the fitness function used.

The first function used belongs in the category of the behavioral fitness functions
similar to the one used in [20]. The fitness was considering the percentage of straight
motion of the vehicle, the activation level of the sensors and the velocity in each
wheel of the vehicle. This function does not consider the distance of robot from the
target position. The form of the function for the individual i of the generation j is:

fi = mean (vL, vR) (aF + aL + aR) (4)

where, vL, vR are the velocities of the left and the right wheel of the robot respec-
tively, and αF, αR, αL are the activation levels of the front, right and left sensors. The
term “activation level” is given by the following equation:

asensor = sensor_reading (t)
max sensor range

, (5)

where, sensor_reading (t) is the reading at the time step t of the experiment. Acti-
vation level equal to 1, means that no obstacle is detected by this sensor.

The second fitness function used, was a tailored one, which measures how close the
robot has went in a target position comparing to its initial position and the activation
level of each sensor that the robot had. The form of the function for the individual i
of the generation j is:

fi =
((

3e2
dfinal−dinitial

dinitial

)/
ct

)
+ (aF + aL + aR) , (6)

where, dfinal is the final distance of the robot from a predefined target point, dinitial the
initial distance of the robot from a predefined target point, and ct is a constant used.

The third fitness function used, belongs in the category of the aggregate functions
and measures only how close the robot has gone towards in a target position
comparing to its initial position. During the evolution process the level of activation
of the sensors or the number of collisions weren’t considered. The fitness function
for the individual i of the generation j is:

fi =
(

3e2
(

dfinal−dinitial
dinitial

))/
ct. (7)

4 HELOT Custom Robotic Vehicle

There is a lot of argument about using simulation or experiments in real robots for
the evolution of their controllers. Some researchers propose the use of simulators
to initially evolve the controllers, and then validate them in real robots. We believe
that although simulation has proven to be a useful tool for the evolution of robot
controllers, the evolution in real robots can incorporate factors that a simulation,
no matter how accurate it is, cannot consider. For this reason we have designed
and developed a low cost robot that allows experimentation and validation of our
approach. All the work presented in this manuscript has been done on a real robot
including the evolution process. We will briefly describe the robot’s parts together
with the essential software developed for control and sensor processing.

476 J Intell Robot Syst (2009) 56:469–484

4.1 Hardware Design

The overall design of the vehicle was made based on the philosophy of cost reduction
without minimizing the capabilities of the vehicle. A low budget commercial mobile
platform was chosen to be the base for the robot evolution and testing of different
devices. Several modifications were made and new sensors and devices were added
since the minimal configuration of the initial platform wasn’t suitable for experi-
mentation. The HELOT vehicle is shown in Fig. 2. The sensor suite of the robot
is consisted of a sonar range device positioned in the center of the upper front part,
and two infrared sensors positioned in the lower left and right part of the vehicle. It
has two odometers one in each wheel and an electronic compass in the upper center
part. The two wheels of the robot are driven from one servo motor each. The low
level control of the servo motors and the data acquisition from the sensors and the
other devices is performed from a board equipped with an OOPic microprocessor.
A Bluetooth device is mounted on HELOT, which allows the communication of the
robot with a host computer also equipped with Bluetooth.

The experimentation area with a HELOT robot inside is presented in Fig. 3. All
experiments were performed in this 3.7 × 4.5 m arena. The floor is covered with a
carpet so as to minimize robot’s sliding, which might lead to erroneous odometer
readings.

4.2 Software Design

An efficient software design is crucial for optimizing the functionality of the ro-
botic research platform. With the microprocessor onboard the robotic vehicle has
limited capabilities and it can’t accommodate sophisticated algorithms for control
and decision making. To overcome this problem a host/slave system consisted of
a base station and the robot was used. The base station is responsible for the
execution of complicated algorithms while the microcontroller onboard the robot

Fig. 2 HELOT’s sensors configuration

J Intell Robot Syst (2009) 56:469–484 477

Fig. 3 Experimental testbed

is managing the devices and actuators and feeds unprocessed data from the sensors
to the remote computer via a wireless RS232 link accommodated by a Bluetooth
device. It should be noted that although the configuration is a host/slave system,
conceptually the robot is considered as an autonomous agent. The software for
device management running on the robot was developed in C, while the software
running on the base station was entirely developed in Matlab. The advantages of
this type of implementation were analyzed in [21]. The relationship of the software
running on the base station with the software running onboard the robot is illustrated
in Fig. 4.

Device Management (C
code)

Onboard Equipment

Base station (remote
computer)

Matlab Module

Matlab Module

Matlab Module

Data Transfer (Motor Commands)
from base station to the robot via
Bluetooth device (wireless RS232

serial link)

Data transfer (Sensors Data)
from robot to base station via

Bluetooth device (wireless
RS232 serial link)

Robot equipped with
microprossesor

Fig. 4 Data flow diagram illustrating the relationship of the software running on the base station
(high level control) and the robot (low level control)

478 J Intell Robot Syst (2009) 56:469–484

Different Matlab modules were developed to process the data from the sensors.
The data from the odometer were used and fed to the model described in [22] for
differential drive robots in order to evaluate the robot’s position.

5 Experimental Results and Analysis

For each fitness function type, we evolved the controllers for 80 generations, using
the same experimental set up. In each generation the goal of the robot is to navigate
from an initial point to a final target point. The environment is static with obstacles
in predefined positions. Each individual had 30 s to accomplish its goal and after that
the experiment was terminated and the robot was repositioned. This time was enough
for the robot, based on its speed, to move almost everywhere in the area which was
operating from its initial point.

During the experimentation on HELOT robot we added a new parameter which
takes into account the activation level of each sensor. In case that the mean activation
level is less than 0.3 (experimentally derived) a penalty value was assigned to the
fitness functions of the specific individual. That was done to avoid cases in which
the robot has stuck to an obstacle and therefore could not complete the experiment.
Obviously, all individuals who fall in this category have limited chances to survive.
Notice that all the experiments were performed without dynamic obstacles since
it’s difficult to reproduce exactly the same conditions using real robots and not
a simulation environment. The best evolved controllers were tested for various

Fig. 5 Test case 1: movement from the lower left area to the upper right

J Intell Robot Syst (2009) 56:469–484 479

T
ab

le
2

P
ar

am
et

er
s

of
th

e
ro

bo
tm

ov
em

en
t

T
yp

e
of

fit
ne

ss
fu

nc
ti

on
T

es
tc

as
e

1
T

es
tc

as
e

2

A
gg

re
ga

te
B

eh
av

io
ra

l
T

ai
lo

re
d

A
gg

re
ga

te
B

eh
av

io
ra

l
T

ai
lo

re
d

M
in

im
um

di
st

an
ce

(m
m

)
63

.8
98

0
65

.4
11

0
47

.8
56

6
41

.8
50

5
59

.1
45

7
42

.6
03

7
T

im
e

(s
ec

)
27

.9
32

2
30

.5
12

6
27

.7
25

4
42

.7
50

7
30

.5
77

4
42

.1
30

5
M

ea
n

se
ns

or
ac

ti
va

ti
on

0.
87

44
0.

86
42

0.
87

99
0.

89
26

0.
80

31
0.

88
80

M
ea

n
lin

.v
el

.(
cm

/s
ec

)
9.

39
70

2
8.

90
37

5
9.

42
32

2
9.

21
67

0
9.

00
04

0
9.

19
33

6
T

yp
e

of
fit

ne
ss

fu
nc

ti
on

T
es

tc
as

e
3

T
es

tc
as

e
4

A
gg

re
ga

te
B

eh
av

io
ra

l
T

ai
lo

re
d

A
gg

re
ga

te
B

eh
av

io
ra

l
T

ai
lo

re
d

M
in

im
um

di
st

an
ce

(m
m

)
41

.8
50

5
59

.1
45

7
42

.6
03

7
12

5.
36

59
11

0.
77

22
12

2.
11

38
T

im
e

(s
ec

)
42

.7
50

7
30

.5
77

4
42

.1
30

5
41

.0
73

54
40

.2
91

2
44

.6
29

46
M

ea
n

se
ns

or
ac

ti
va

ti
on

0.
89

26
0.

80
31

0.
88

80
0.

81
64

38
0.

81
50

5
0.

82
02

7
M

ea
n

lin
.v

el
.(

cm
/s

ec
)

9.
21

67
0

9.
00

04
0

9.
19

33
6

8.
25

43
23

8.
15

25
24

7.
99

88
42

480 J Intell Robot Syst (2009) 56:469–484

navigation conditions and scenarios. Four different sets of experiments were con-
ducted for validation, and each individual had one minute to go as close as possible
to a predefined target point, without any knowledge of the area in which it was
operating.

In the first test case studied, the robot was starting in the lower left of the
experimental area and it was moving towards the star mark in the upper right,
while avoiding different obstacles in its path. The trajectories followed by the three
different controllers in test case 1, are presented in Fig. 5. The robot which used the
controller derived from the tailored fitness function was the fastest and went closer
to the target point (see Table 2).

In the second test case, the initial position of the robot was the upper left part
while the target point was at the lower right, while avoiding different obstacles in its
path. The trajectories followed by the three different controllers in test case 2, are
presented in Fig. 6. The trajectory followed by the robot which is using the controller
which derived from the aggregate fitness function is completely different than the
other two. In the third test case, the initial position of the robot was the upper left
part while the target point was at the lower right, while avoiding different obstacles in
its path. The trajectories followed by the three different controllers in test case 3, are
presented in Fig. 7. The robot which used the controller derived from the behavioral
fitness function was slower than the other two. In the fourth test case, the initial
position of the robot was the lower right part while the target point was at the upper
left, while avoiding different obstacles in its path. The trajectories followed by the
three different controllers in test case 4, are presented in Fig. 8.

Fig. 6 Test case 2: movement from the upper left area to the lower right

J Intell Robot Syst (2009) 56:469–484 481

Fig. 7 Test case 3: movement from the upper left area to the lower right

Fig. 8 Test case 4: movement from the lower left area to the upper right

482 J Intell Robot Syst (2009) 56:469–484

Table 3 Efficiency of each
fitness function for each test
case

Test case 1 2 3 4 Mean value

EF Aggregate 3,732 3,715 3,837 3,859 3,7858
Behavioral 3,567 3,583 3,816 3,771 3,6843
Tailored 4 3,700 3,681 3,778 3,7898

Several parameters concerning the robot movement were monitored during their
operation in the different test cases and presented in Table 2.

To measure the overall behavior of the controllers we introduce a metric of the
efficiency of the robot’s performance. The efficiency metric is given by:

EF(i) = min {MDC}
MDi

+ min {TC}
Ti

+ MSAi

max {MSAC} + MLVi

max {MLVC} , (8)

where, MD is (final) minimum distance to target, MST is the time needed for the
minimum distance, MSA is the mean sensor activation, MLV is the mean linear
velocity, c = 1,. . . i is the group of robot controllers considered. The maximum value
of efficiency as derives from (8) is 4. The performance of each fitness type for all test
cases is presented in Table 3.

The mean efficiency in all test cases indicates that the tailored and aggregate
fitness functions are likely to produce more efficient controllers in comparison to
the behavioral fitness function. In most cases behavioral fitness function produces
the worst results, while the aggregate and the tailored are better. The robots which
are using controllers produced by the aggregate fitness functions are moving faster
comparing to the others (Table 2). Although the trajectories followed are similar
there are certain variations that indicate different behavior based on the fitness
function used. This claim is supported by the fact that all the other parameters in
the evolution process in all cases are the same. The different values of EF and the
trajectories followed indicate that different fitness functions are leading to different
behaviors. The fact that the efficiency of the aggregate fitness is similar to the
efficiency of the tailored is indicating that efficient controllers can derive by only
measuring success or failure to complete the task for which controllers are being
evolved. This is promising because if aggregate selection could be achieved for much
more complex tasks, it could eventually lead to the application of ER methods
to environments and tasks in which humans lack sufficient knowledge to derive
adequate controllers.

6 Discussion and Conclusions

Fuzzy logic controllers without appropriate tuning represent a pure reactive solution
for the mobile robot navigation problem. Therefore, evolution processes have been
extensively used to optimize the structural characteristics (mainly membership func-
tions and rules) of fuzzy controllers. In these cases, the performance of the evolved
controller is heavily based on the selected fitness function.

In this paper we examine the impact of the selection of the fitness function on the
evolution of a fuzzy logic controller, together with the navigation performance of a

J Intell Robot Syst (2009) 56:469–484 483

real robotic vehicle. We used different types of fitness functions, namely, aggregate,
behavior and tailored, that represent different evolution approaches. In order to
evaluate the performance of the evolved controllers and investigate how fitness
functions affect the overall behavior of the vehicle we introduced the efficiency
factor metric. From the experiments conducted, it turned out that the “tailored” type
function is more appropriate for the navigation problem in static environments.

Future research will include the formulation of a metric for the measurement of
the efficiency of the performance of a team of robot vehicles. We also anticipate
studying the effects of fitness function selection on controllers that avoid dynamically
moving obstacles.

References

1. Tsourveloudis, N.C., Doitsidis, L., Valavanis, K.P.: Autonomous navigation of unmanned
vehicles: a fuzzy logic perspective. In: Kordic, V., Lazinica, A., Merdan, M. (eds.) Cutting Edge
Robotics, pp. 291–310. Pro Literatur Verlag, Mammendorf (2005)

2. Yang, X., Moallem, M., Patel, R.V.: A layered goal-oriented fuzzy motion planning strategy for
mobile robot navigation. IEEE Trans. Syst. Man Cybern., B 35(6), 1214–1224 (2005)

3. Resu, P., Petriu, E.M., Whalen, T.M., Cornell, A., Spoelder, H.J.W.: Behavior-based neuro-fuzzy
controller for mobile robot navigation. IEEE Trans. Instrum. Meas. 52(4), 1335–1340 (2003).
doi:10.1109/TIM.2003.816846

4. Tsourveloudis, N.C., Valavanis, K.P., Hebert, T.: Autonomous vehicle navigation utilizing elec-
trostatic potentional fields and fuzzy logic. IEEE Trans. Robot. Autom. 17(4), 490–497 (2001)

5. Ye, C., Yung, N.H.C., Wang, D.: A fuzzy controller with supervised learning assisted reinforce-
ment learning algorithm for obstacle avoidance. IEEE Trans. Syst. Man Cybern., B 33(1), 17–27
(2003)

6. Lee, S.-I., Cho, S.-B.: Emergent behaviors of a fuzzy sensory-motor controller evolved by genetic
algorithm. IEEE Trans. Syst. Man Cybern., B 31, 919–929 (2001)

7. Kim, S.H., Park, C., Harashima, F.: A self-organized fuzzy controller for wheeled mobile robot
using an evolutionary algorithm. IEEE Trans. Ind. Electron. 48(2), 467–474 (2001). doi:10.1109/
41.915427

8. Hagras, H., Callaghan, V., Colley, M.: Learning and adaptation of an intelligent mobile robot
navigator operating in unstructured environment based on a novel online fuzzy-genetic system.
Fuzzy Sets Syst. 141, 107–160 (2004). doi:10.1016/S0165-0114(03)00116-7

9. Hoffman, F., Pfister, G.: Evolutionary design of a fuzzy knowledge base for a mobile robot. Int.
J. Approx. Reason. 17(4), 447–469 (1997). doi:10.1016/S0888-613X(97)00005-4

10. Matellan, V., Fernadez, C., Molina, J.M.: Genetic learning of fuzzy reactive controllers. Robot.
Auton. Syst. 25, 33–41 (1998). doi:10.1016/S0921-8890(98)00035-9

11. Nanayakkara, D.P.T., Watanabe, K., Kiguchi, K., Izumi, K.: Evolutionary learning of a fuzzy
behavior based controller for a nonholonomic mobile robot in a class of dynamical environments.
J. Intell. Robot. Syst. 32, 255–277 (2001). doi:10.1023/A:1013939308620

12. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of
Self-Organizing Machines. MIT, Cambridge (2000)

13. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness function in evolutionary robotics: a survey and
analysis. Robot. Auton. Syst. 57(4), 345–370 (2008)

14. Kaiser, M., Friedrich, H., Buckingham, R., Khodabandehloo, K., Tomlinson, S.: Towards a
general measure of skill for learning robots. In: Proceedings of the 5th European Workshop
on Learning Robots, Bari, Italy (1996)

15. Doitsidis, L., Valavanis, K.P., Tsourveloudis, N.: Fuzzy logic based autonomous skid steering
vehicle navigation. In: CD-ROM Proceedings of the 2002 IEEE International Conference on
Robotics and Automation, Washington D.C. (2002)

16. Valavanis, K.P., Doitsidis, L., Long, M., Murphy, R.R.: Validation of a distributed field robot
architecture integrated with a MATLAB based control theoretic environment: a case study of
fuzzy logic based robot navigation. IEEE Robot. Autom. Mag. 13(3), 93–107 (2006)

17. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary
Tuning and Learning of Fuzzy Knowledge Bases. World Scientific, Singapore (2001)

http://dx.doi.org/10.1109/TIM.2003.816846
http://dx.doi.org/10.1109/41.915427
http://dx.doi.org/10.1109/41.915427
http://dx.doi.org/10.1016/S0165-0114(03)00116-7
http://dx.doi.org/10.1016/S0888-613X(97)00005-4
http://dx.doi.org/10.1016/S0921-8890(98)00035-9
http://dx.doi.org/10.1023/A:1013939308620

484 J Intell Robot Syst (2009) 56:469–484

18. Tsourveloudis, N., Doitsidis, L., Ioannidis, S.: Work-in-process scheduling by evolutionary tuned
fuzzy controllers. Int. J. Adv. Manuf. Technol. 34(7–8), 748–761 (2007). doi:10.1007/s00170-006-
0636-x

19. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. Springer,
Heidelberg (1994)

20. Floreano, D., Mondana, F.: Evolution of homing navigation in a real mobile robot. IEEE Trans.
Syst. Man Cybern., B 26(3), 396–407 (1996)

21. Nelson, A.L., Doitsidis, L., Valavanis, K.P., Long, M.T., Murphy, R.R.: Encorporation of
MATLAB into a distributed behavioral robotics architecture. In: Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), pp. 2028–
2035. Sendai, Japan (2004)

22. Borenstein, J., Everett, H.R., Feng, L.: Where Am I? Sensors and Methods for Mobile Robot
Positioning. Univ Michigan, Ann Arbor (1996)

http://dx.doi.org/10.1007/s00170-006-0636-x
http://dx.doi.org/10.1007/s00170-006-0636-x

	Evolution of Fuzzy Controllers for Robotic Vehicles: The Role of Fitness Function Selection
	Abstract
	Introduction
	Fitness Function Categories
	Fuzzy Logic Controller and the Evolution Process
	Fuzzy Logic Controller Design
	Genetic Fuzzy Tuning

	HELOT Custom Robotic Vehicle
	Hardware Design
	Software Design

	Experimental Results and Analysis
	Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

